

Daily Tutorial Sheet 5 JEE Main (Archive)

61.(D) Structure of XeO_3F_2 is $O = XeO_0$

No. of bond pairs = 5, No. of π - bonds = 3, No. of lone pairs = 0.

62.(A) Electron affinity order : Cl > F > O

Due to strong electron-electron repulsions, the electron affinity of fluorine is less than chlorine.

63.(C) Structures of oxides of nitrogen are:

Thus, N_2O_3 and N_2O_4 contain one N-N bond.

64.(D) Rn (Radon do not occur in nature)

It is obtained as a decay product of Ra

$$_{88}$$
Ra 226 \longrightarrow $_{86}$ Rn 222 + $_{2}$ He 4 (Radium) (Radon)

Technically no option is matching.

- 65.(A) Due to intermolecular hydrogen bonding HF has highest boiling point among hydrogen halides.
- **66.(C)** $\stackrel{+2}{NO}$, $\stackrel{+1}{N_2O}$, $\stackrel{+4}{NO_2}$, $\stackrel{+3}{N_2O_3}$
- **67.(D)** H_3PO_2 $HO \stackrel{O}{\underset{H}{\bigvee}} H$ H-directily attached to P are reducing
- **68.(D)** $H_{3}PO_{2}$ O O H $H_{4}P_{2}O_{5}$
- **69.(A)** $3Cl_2 + 6NaOH \longrightarrow 5NaCl + NaClO_3 + 3H_2O$
- **70.(A)** $I_2 + 10 \text{ HNO}_3 \longrightarrow 2 \text{ HIO}_3 + 10 \text{ NO}_2 \uparrow + 4 \text{ H}_2\text{O}_{(Y)}$

Oxidation state of I in $HIO_3 = 5$

71.(B) $\frac{6 \text{NaOH}}{\text{Hot and conc.}} + \frac{\text{Cl}_2 \rightarrow \text{NaClO}_3 + 5 \text{NaCl} + 3 \text{H}_2 \text{O}}{\text{EVa} \left(\text{OH} \right)_2 + \text{Cl}_2 \rightarrow \text{Ca} \left(\text{OCl} \right)_2 + \text{CaCl}_2 + \text{H}_2 \text{O}}$

72.(C)

Basicity of $H_3PO_2 = 1$ (one replaceable H^+ ion per molecule)

74.(C) N_2O_3 , Li_2O , Al_2O_3

 $\mathrm{N}_2\mathrm{O}_3$ is a acidic oxide (it is a non metal oxide)

Whereas, Li_2O oxide of Li (alkali metal) is basic in nature and Al_2O_3 reacts with both acids and alkali and hence it is amphoteric in nature.

Other examples of amphoteric oxides are ZnO, BeO, Ga_2O_3 , Cr_2O_3 etc.

$$\textbf{75.(1.67)} \ 3\text{Cl}_2 + \underbrace{6\text{NaOH}}_{\left(\text{Hot \& conc}\right)} \rightarrow \underbrace{5\text{NaCl+ NaClO}}_{\left(x\right)} + 3\text{H}_2\text{O}$$

$$NaCl + AgNO_3 \rightarrow AgCl \downarrow NaNO_3$$

$$-O - Cl = 0$$
 \parallel
 O

Bond order =
$$1 + \frac{\text{no of } \pi \text{ bond}}{\text{no. of } \sigma \text{ bond}} = 1 + \frac{2}{3} = \frac{5}{3} = 1.67$$

(in Resonance)

 $(S_2O_8^{2-})$

(Number of S - O bonds = 8)

(rhombic sulphur)

(Number of S - S bonds = 8)